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ABSTRACT

Our aim in this work is to show that, in a "permanent regime", the

behaviour of a viscous incompressible fluid can be, in principle, determined

by the study of a finite number of modes. It is proved that the behaviour

for t + 1 of the solution to the Navier-Stokes equations is completely

determined by its projection on appropriate finite dimensional subspaces,

corresponding to eigenspaces of the linear operator, or more general

subspaces, including finite element subspaces. Some indications on the

dimension of such subspaces are given.
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SIGNIFICANCE AND EXPLANATION

If a viscous incompressible fluid is driven by time independent forces of

sufficient intensity then, after a transient period, the "permanent" regime

seems to be totally chaotic and unstructured. The present work is part of a

set of articles which, however, tend to show that there may be some structure

in such flows (at least in the case where the space dimension is 2), in

particular that they are determined by a finite number of parameters.
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AYMPTOTIC NUMERICAL ANALYSIS FOR ThE NAVIER-STOKES EQUATIONS (I)

C. Foias and R. Temam

Introduction

Up to now the numerical analysis of the Navier-Stokes equations has been limited to

the stuay of the approximation of time dependent solutions on a finite interval of time or

to the approximation of stationary solutions (cf. among many other references [1,4,8,9]).

In the presence of a turbulent flow driven by a steady excitation a different type of

problem arises naturally: the study of the long time behavior of the solutions.

The present is an essay, the purpose of which is to show that for the 2-D Navier-

Stokes equations and, under some circumstances for the 3-D Navier-Stokes equations, there

is a theoretical basis for determining the qualitative long time behavior of a fluid by the

study of a finite number of adequate modes. A typical result is the following one: Let

W be a finite dimensional subspace of the natural function space V. If W satisfies a

certain condition, then the behavior for t + w of a solution u of the Navier-Stokes

equation is completely determined by the behavior for t + I of its projection on W.

several results of this type are derived in this article. While this kind of problem

was already discussed in [2], our present interest was aroused and inspired by the

questions, conjectures and ideas due to 0. P. Manley and Y. M. Treve [7,12,11), with wh~in

we acknowledge fruitful discussions and correspondence. In this paper we did not try to

produce the best constants, and we did not try to present the main inequalities in a

nondimensional form. These improvements of the work, and other developments will appear in

a subsequent work [131.

The plan is as follows:

1. Notations and recapitulation of results.

2. Approximation in the subspaces Vm .

3. Approximation in a general subspace.

4. Time periodic solutions.

5. Remark on Galerkin approximation.

bpornsored by the UniterI States Army under Contract No. DAAG29-80-C-0041.



j. Notations and recapitulation of results

Let 0 be a bounded domain of R, 2 or 3, and let r be its boundary. We

assume that r is a manifold of dimension L -1, of class C
4 

with a finite number of

connected components, and that 0 is locally located on one side of r. We shall firstly

consider the initial value problem for the Navier-Stokes equations:

(1.2) - Vau + (u*V)u + Vp = f in Q

(1.2) Vu = 0 in U

(1.3) u 0 in F

(1.4) uIt=0 =u 0 ,

where V > 0 is the kinematic viscosity, u (u1 ,u2 ) or (Ulu 2 ,u 3 ) is the velocity, a

vector-valued function of x G Q and t ) 0, and p is the pressure, p = p(x,t), and

f represents the external body force per unit of mass.

All what follows apply to the case where (1.3) is replaced by a nonhomogeneous

boundary condition, which corresponds to more realistic physical situations (Couette-Taylor

flow, E91). We will refrain fro treating this case to avoid purely technical difficulties.

We denote by L 2() the space of square integrable real functions on a and by

H (Q) the Sobolev space made of the functions which are in L
2
(Q) together with their

first derivative and which vanish on F. We set, for u in L
2 
(Q) or L

2
(a)I (resp.

u in H (SO or H (U)
U 0

1u1 2 = I tu(x)12dx, resp. 1u1
2 

= f IVu(x), 2dx

The space L2 (I) admit classically an orthogonal decomposition of the form H * G, where

G = (v - Vq, q G H (U) }

and its orthogonal H satisfies

H = {v G L (U) , div v = 0, v nIr 01

n the unit outward normal of F. Let also

V - (v H () div v o} a

It is clear that H and V are Hilbert spaces for the norms l and I.,and their

c'irrespondinq scalar products. While IvI
2 

is equal to the kinetic energy of the fluid
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with vt!locity v (the density p 1), we recall that for v E V, Ivi too, reduces to a

physical quantity:

9lVO = Icurl v(x)1 2dx

Let w denote the orthogonal projection of L2 () onto H and define the

operators A and B by

(1.5) Au - -rAu for u e D(A) - V ( H 2(a).

(1.6) B(u,v) = i[(u,V)v], for u,v e D(A)

Then A is a self-adjoint operator in H with an orthonormal basis wI} of

eigenvectors, such that

(m.7) Awm  1 w , m ) 1 0 < 2

* + as m + +w andm

V.) V D(A 1/2), uli = JA'2uJ for u 9 V

The operator A is an isomorphism from D(A) onto H and from V onto V' (the dual

of V which one can identify to a superspace of H). Concerning B we recall the

following fact: B is a compact mapping from D(A) x V or V x D(A) into H and from

V x V into V'. Furthermore we have the estimates:

q lull/ 2 u11/ 2lvIll/ 2 Ivn1 12  if 9. 2
(1.9) IBu,v)g 4V 4V 61ul1/14 ui3 141v1l1 4 vf3 14' ""if - 3

f lu l1/2 1Au11/1vW

( )1/2 1/2 1/2 1/2

if £ = 2 and if X . 2 or 3: {IAul li

(1.11) IB(u,v)l I- c I uJv

The constants cO and c, depend only on (2 but are not easy to determine since they

invo ve the norm of the operator A
-
', and Sobolev constants. All the above results can

be found for instance in 16], [9).

We can now recall the functional formulation of (1.1)-(1.4): This is the functional

it terential equation
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(1.12) d- + VAu + B(u,u) = f, ult 0 =

dtt

where we shall assume for simplicity u0 e V and

f is continuous and bounded from [0,-) into H,
(1.13) =d

f' belongs to L 2C(0,-;V
' 1

It is well-known that, if £ = 2, there exists a unique function u such that

(1.14) u G C([0,m);H) r) L o0([0,);V)

satisfying the equation (1.12) in V (cf. for instance [9]). Moreover u is actually a

continuous function from (0,-) into D(A), which is bounded in D(A) as t + +0. We

set

(1.15) Iu(t)l 4 c2 = c 2 (ju 0 j,[f],1/V,c 0 X, 1) for t ) 0

(1.16) IAu(t)I 4 c3 = c3 (1uo1,[f],1/Vco,A1 ,1/a) for t s > 0

where

(1.17) [f] = sup jf(t) .
0<t<l

The estimate (1.15) is given in [2]; the estimate (1.16) is more recent and given in [5]

(cf. also [10]).

if £ = 3, there exists a weak solution of (1.12) bounded in H. Such a solution may

or may not be bounded in V. We will only consider such a solution if it is bounded in V

(1.18) lu(t)l 4 R for t ) 0

In this case it follows also from 13), [51, (10), that u(t) belongs to D(A) and is

bounded in D(A) as t +

(1.19) IAu(t)I r c 4 (R,[f],1/V,c1,) 1 ,1/%) for t ) > 0

In the sequel we will let £ = 2 or 3, and consider solutions of (1.12) which are

uniformly bounded in V on [0, ); the existence of R < I is an assumption if £ = 3,

and is automatic it 2 = 2 (R = c2 cf. (1.15)). See the comment in Remark 2.1.
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2._ Approximation in the sulspaces V m

2.1. An inequgality

For m 0 N, we denote by V m the space spanned by the eigenfunctions Wl,.,,

of A, and by pm the projector in V, H or V1 onto V.. Finally Qm I Pm. It is

easy to see that

(2.1) NI 4 A11 I v Soe Vm

(2.2) X- /211 *4

Let u(I) and v(*) be solutions of the equation

(2.3) U' + VAu + B(u,u) - f, t > 0, uCO) -U()

(2.4) V' + yAv + B(v,v) - 9, t > 0, v(0) - v

where v 0 e V and g satisfies the same assumption (1.13) as f. we set

W -u - V, Pm . Pw,~ q, Qmw, e - f - g, em, Qme

Then

q VAq 4 QMB(v,w) + QM(w,u1

and consequently(1)

(2.5) J qm1 2 
+ ,lqg~2 . (B(v~p,).qm) - (B(pm U),qM)

_ (B(q5, u),q,) + (emrq,)

The right-hand side of (2.5) can be bounded because of (1.11) by (2 ).

Merecall that ((i),)--(B(,),*) for in V.

(2cii,ci ..... denote various positive constants. The ci's are the same all the tinMe,
c'c,.. may represent different quantities at different places.



1 I/2le j'%.I + c1 (IAuI + AvI)IpMIIMI + c~lAullq,,IqI

( (for e > 0 arbitrary)

1 1/-lm,C % 2 + v , 2 C = u , % 2

.2 + 1 IQ12 + +O11 +1.T I 2 ev2 E- ( A u + A v I )
2 1p. 1

2  + mc i ,o U

( (by (1.16), (1.19))

-1 2 2

< CVEIq I
2  

+ 1. le 1
2  

+ " -- PM12 -+ c 1/2 Iq 12m +V 1 4 M+ 1 'm

for t ) a

We have thus proved the following

Lemma 2.1

If m is large enough, so that(1)

2 2

(2.6) m ;,P2
m+1 v1

then, for t ; a > 0, 1 22 2
d 2 4 X 1 l2 21 . P1

(2.7) 1 ?qm1
2 + ,, le= 2 

+ c i v

ccX- 1/2

V, v X-1/2 1 0 C1 4 m+l
1 4 m+1 2 2V

2.2. The main result

We introduce the following weak mode of convergence: we will say that (t)

converges essentially to 0 as t + - (and we write P(t) _- e*_- 0) if:

(2.8) there exists K > 0, such that for every 6 > 0, there exists

t6  satisfying

meas[T e (t,t + 1),j)(t)) ) 6 K ( i6, for every t > t6

32

m 2We need m+ 2 (sup Au(t)I) and actually it is sufficient to have

2
c I

)m > - lim sup IAu(t)l 2
.

+1 V2 t
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It is easy to see that if #'(t) +0 for t + m then P(t) ce O, for t +. Also

if ; 6 L1 (0,1) then p(t) - 0 as t

Theorem 2.1

We assume that X = 2 or that £ , 3 and that u and v are solutions of (2.3),

(2.4) uniformly bounded in V. We assume also that (2.6) is satisfied. Then:

i) If Ipm(u(t) - v(t)l + 0, 1(1 - Pm)(f(t) - g(t))j + 0, for t + -, then

(2.9) 1( - Pm)(u(t) - v(t))( + 0 for t +

(2.10) Ju(t) - v(t)I + 0 for t + * .

ii) If fp,(u(t) - v(t)) 
2  

1 0, (I - p m)(f(t) - g(t))1
2 

C 0, for t then

(2.9) still holds but instead of (2.10),

(2.11) ju(t) - v(t)1
2 
_ce. 0 for t + -.

Proof

We infer from (2.2) and (2.7)

2-2
d q12 + U,X1/2 q 12 L 1e1 2 

+ 4 1F" + m+1 m "v m -- I

Whence for t ; t0 ) a:

2 +X 4"/2(t-t )

2 m+1v

(2.12)- 1 I(m)1)12]e )+ ea+

+ f { -- e(fl2 14 P T) 2 e 1 d

There exists K,Ic' > 0 such that for every 6 > 0, there exists t which satisfies

for t t :

me5s{T e (t,t + 1), P m(u(T) - v(,))12 ; 61 4 K6

meas{T e (t,t + 1), IP (f(T) - g(T)) 2 ; 6) r K'6

For a fixed integer M we take t ) t o + M, to O max(t 6 ,a). Then (2.12) implies

-7-
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1/2 -1 2 2/2
(t-t 0 X 4cc t m+1

Sqm(t)12  c(u,v)e m+ + 6(_ + I e dr
t-M

242 t-M "v'x1/2(t-T)

+ jT'- c(f,g) + V c(uvfl e dT)
t0

4c2c /

+ M6(K' L c(f,g) + K -- c(uv))

where

c(u,v) = supIu(t) - v(t)I, c(f,g) = supjf(t) - g(t).
t)O t>O

T h e r e f o r e , a s t 1 2,

li upq.tj A I +1 4 1 - e +

4cc m+1

I- 2 /2 -

4c4c~c4 11

m+1

ec c(f,g) + K - uv))
We let 6 + 0 and then M * , and we obtain (2.9).

Remark 2.1

This result which is contained in a slightly weaker form in 12], when the dimension of

space is Z= 2, is reproduced here for the convenience of the reader.
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3. Approximation in a general subspace

In the applications the utilization of the basis twin formed by the elgenvectors
m) 1

of A is not practical since these functions are not easy to determine. Therefore we

shall now show how the preceding theorem can be extended when Vm  is replaced by a general

finite dimensional subspace W of V.

3.1. Assumptions

Let W be a finite dimensional subspace of V and let P(W) be the projector in

H onto W,Q(W) = I - P(W). Since P(w) is not a projector in V, it may happen that

((G,)) * 0 if P G W and t 9 V, P(W)* - 0. However, one can show (cf. Lemma 3.2

below) that there exists p(W), 0 p(W) < 1 such that

(3.1) o((p,P))j ( Q(W)M .(U, v 6 W, V0 Q V, P(W) = 0.

We associate also to W the two numbers A(W),W(W)

2
X(W) = Infl ,l 'p G V, P(W)p = 0, 1 1}

U(W) = Sup(O ,I V 6 w, Hil = 11

so that

(3.2) J0 4 X(w)-1 /2, 
, w 6 V, P(W ) = 0

(3.3) , u (W) 1/211'f. V* G W .

When it is not necessary to mention the dependence on w, we will write simply

P,Q,p,A,&, instead of P(W),...

3.2. An inequality

We consider as in Section 2, the solutions u(*),v(,) of (2.3), (2.4) and we set

w = u - v, p = Pw, q = Qw, e = f - g

We have

q- + VQAW + QB(v,w) + QB(w,u) = Qe

and taking the scalar product in H with q, we get
I d 2 2
1 Iqi + Vqg2 = -(B(v,p),q) - (B(p,u),q),

-(B(q,u),q) + (Qe,q) - v((p,q))

Using (1.11) and (3.1)-(3.3) we find that the right-hand side of this inequality is lsi

than

-9-



X )Qej1qI + VP1/2 jpjIqI + c 1 (Auj + IAvj)jplIqt + clAuliqlkql

1 (by (1.16), (1.19))

S"1 3 Qe,
2 2 + 3V P21lP,2

3 4ev 3 C

3.2

Elv iq12 + c2 (2 2 + c -1/2 2
+-Iq -i---- (JAul + P1 )vIq

3 4ev IAV)2 + c 4

3k- 1 c 2c

EvIqI 2 
+1 I 2e,2 + -3 L± + VP2 ) Ip 2 + C c 4) 1

/
2
1qI for t a t > 0

If 22CC 4

(3.4) W) >
2

trien we set 1 C 1/2

(3.5) V' = V - ClC 4 (W)
-I 2 

> 0, C = 2 2V

and we have established:

Lemma 3.1

If (3.1), (3.4) hold, then for t > a > 0,

3
1  

2 2

(3.u) a jq1
2 + V q 2 < iQe 2 + "1 (._.L_ + vp2 p)Pl12

dt

V',C as in (3.5).

j.3. Statement of the result

As in Section 2.2, we have

Theorem 3.1

We assume that £ = 2 or that £ =3 and that u and v are solution of (2.3),

(2.4) uniformly bounded in V. Let W be a finite dimensional subspace of V such that

(3.4) is satisfied. Then

1) It IP(u(t) - v(t))I - 0, 1(1 - P)(f(t) - g(t))I + 0 for t + 1, then

(3.7) 1(1 - P)(u(t) - v(tj)) + 0 for t + ,

(3.8) Ju(t) - v(t)l + 0 for t + •

11) _f IP(u(t) - v(t))1 2  c.e. 0 - p)(f(t) - g(t))l
2  c*e**. 0 for t + -, then

-10-
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(3.7) holds and, instead of (3.8).

(3.9) Ju(t) - v(t)j . 0, for t +

The proof, startinq from (3.b), is essentially the same as that of Theorem 2.1.

In the rest of this section we give examples and show that (3.1) is always satisfied,

while assumption (3.4) is satisfied if W is "sufficiently large".

3.4. Assumption (3.1).

Lemma 3.2

Under the assumptjons of Section 3.1, there exists p = P(W), 0 ' P < 1 such that

(3.1) holds.
(
l
)

Proof

If (3.1) was not true, we could find two sequences IV.} , [j} ,. e W, Q. e V,

PWl 0, such that

LpIR If op 1-Ip I J Iu~j |,j l((j,, )) • - N3 3n 3!

Setting =! we find

(3.10) > kw v (iC
We can extract a subsequence (still denoted j) such that P! converges to some limit P:,

3

W e , P = . At the limit, (3.10) gives

((,* - I, I =0 A t t, liit ( g

so that I N = 1, K * 0, by contradiction with P' = 0.

3.5. Assumption (3.4) - Example

We consider the following situation which is classical in the numerical analysis of

partial differential equations and in particular of Navier-Stokes equations (cf. E9], Chap.

I, 4):

(Actually the fact that p < 1 which is important in other developments, did not play
any role in the proof above. The inequality (3.1) with O(W) = I is trivial.
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We are given a family [Whlh , of finite dimensional subspaces of V. Tne set of

indices H is arbitrar, but is equiped with a concept of limit(1), which we denote for

simplicity lir. For example, in the Galerkin method, H = 1/M, h = l/m, and we pass to

h+0
the limit m + -, h + 0. For finite element methods (cf. [9]), H is a family of regular

triangulations of the domain 2), and we let the diameter of the largest triangle go to 0.

The main assumption on the spaces Wh is the following one

(3.11) ¥ Q V, Inf 10 - J| + 0 as h + 0
-'1Wh

In the case of an increasing sequence of subspaces Wm of V (Galerkin method),

assumption (3.11) means simply that

(3.12) U W is dense in VMGM

Then we see that assumption (3.4) is satisfied for h "sufficiently small".

Lemma 3.3

Under assumption (3.11),

(3.13) lim (Wh ) h
h+O

and (3.4) is satisfied for h sufficiently small.

Proof

The proof consists in showing the more precise following statement

(3.14) For every integer m, there exists hm and, for h ( hm, A(Wh ) ) - .

For given m and 6 > 0, the assumption (3.11) written with 0 = wj, j = 1,...,m,

shows that there exists hm such that

Inf |w - 4| G 6, tor j = 1,...,m and for every h ( hm
h W

MA filter F with a denumerable basis; lim means roughly speaking lim.

h O F

-12-
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Thus for every h & hm ,  there exists w1,...,Wm in W h, with w - wJ Thereore

if P U V, (I - P(W))p = U, we have

I = 1p * 2 + IlI - P 2

m m

M+l 1,P I (A m+1 - 1 ) I jPm 2
m+1 1

= +1 i2;l - (A"m+i - A1) (,,,w. .)
j-1

> (Am+ 1 - (Xm+1 - A 1.)A 1m6
2 )I 012

This implies

h(Wh m+1 - (Am+1 1 1
m
s

and the result follows by taking 6 small enough. *

It is also useful for later purposes to establish

Lemma 3.4

Under assumption (3.11),

(3.15) lir P(Wh ) h
h+0

proof

Due tQ (3.11), for every 46 V and for every h, there exists 4/h 6 Wh' with

lim 1* - h = 0
h+0

Due to (3.3), I1 / (Wh)'/
2 

@h' , and if the family Lj(Wh) does not converge to +

for h 
+ 

0, lim inf (Wh ) h K < , we would have at the limit: 1*I ( KI4/ , V* e V, and

h+O

this is impossible.

-13-



4. Time periodic solutions

The notations are the same as in Section 3. If the assumption (3.4) is satisfied, we

infer trom Lemma 3.1 that there exist two positive constants, c5 > 0, '1 > 0, independent

of u and v such that

-n(t-t 0 )

(4.1) (I - P)(u(t) - v(t))l 2 ( c 5{e

+ t e- [(t-j)[P(u(r) - v(T)j
2 

+ (I - P)(f(r) - g(T))2I]d} ,

to

for t > t 0  a > 0.

We can now prove the following:

Theorem 4.1

We assume that £ = 2 or that ± = 3 and that u is a solution of (2.3) uniformly

bounded in V. Let W be a finite dimensional subspace of V such that (3.4) is

satisfied. Assume moreover that there exist periodic functions f.(-), p.(.) with value

in H and W and period T > 0, such that

(4.2) lim If(t) - f.(t)I = lim IPu(t) - p.(t)I = 0 .

Then there exists a periodic solution u. with period T of the equation

(4.3) u' + VAu. + B(u.,u.) - f.

such that

(4.4) lim lu(t) - u-(t)J = 0
t4.

Proof

Apply (4.1) to u and v,v(t) = U(t + jT). Then for AT ) to, we obtain at time

t + IT:

-14-



(4.5) (I - P)(u(t + £T) - u(t + (9 + 2)T)1
2 

4

-n(t+LT-t ) t+LTSc5 {e O+j e -q t a ' T

to

[JP(u(T) - u(T + jT)) 2 + I(I - P)(f(r) - f(r + jT))1
2
]d}(.

For £ > 0 given, let t E t0  be such that for t > t C

JPu(t) - p.(t)i 4 e, Jf(t) - f.(t)J 4 C

Then from (4.5) we obtain that

+ ( + 2 n(t+LT-t )

I(I - P)(u(t + IT) - u(t + (j + £)T))1
2 

4 c5e

+ c5c(u,f) ft£ e- Mt+fT-T) dT + 8c 5 c
2 

ft+LT e- (t+dT-T)d
to t

so thai 2

sup"( - P)(u(t + LT) - u(t + (L + j)T))l2 (c cce- T 
+

t~0

to
for every j > 0 and £ ) T-. Therefore {u(t + £T)) is a Cauchy sequence in the space

of continuous founded functions from (to,) into (I - P)W. Thus there exists a

continuous bounded functiLon u. from [t,M) into H, such that

(4.6) u(t + LT) + u.(t) as £ + -, in H, uniformly in t on [to, )

Since jAu(t + W)1 ( c4  for all t ) a, 9 ) 1, we see that IAu.(t)I 4 c4  for all

t > a, and

(4.7) u(t + IT) + u n(t) in V, V, t > Q

It is then easy to see that U, is a solution, bounded in V, of (4.3), and u. is

periodic of period T, just because of (4.6). The converqence

(4.8) lim Iu(t) - u.(t)l - 0
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follows immediately from (4.6) as well as the T periodicity of u.(*). hfe convergence

(4.4) follows from (4.8) and the fact that JAu(t) - Au.1 remains bounded (by 2c4 ) as

t 4 . 0

we then deduce the following result for stationary solutions

Theorem 4.2

The assumptions are similar to that of Theorem 4.1. We assume that there exist

f Q H and p. 6 W such that

(4.9) If(t) - f.1 + 0, IPu(t) - p_1 + 0, for t + .

It follows that there exists u. e D(A) such that

(4.10) Iu(t) - u.1 + 0 for t +

where u. is a (stationary) solution of the Navier-Stokes equation

(4.11) VAU + B(u.,u.) = f.

Proof

We apply Theorem 4.1 with T > 0 fixed, arbitrary, and we obtain (4.3), (4.4). Now

T > 0 can be chosen arbitrarily small and since u. must be independent of T in (4.4),

we conclude that u has period 0, i.e. u. is independent of t. U
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5. Remark on Galerkin approximation

We now assume that the dimension £ 2.

For simplicity we restrict ourself to a Galerkin approximation of Navier-Stokes

equations based on the spaces Vm, i.e. the family wj of eigenfunctions of the Stokes

problem. We will show that if m is sufficiently large, the behavior as t * of the

Galerkin approximation um, is completely determined by the behavior as t + of a

certain number m. of its modes, i.e. of Pm Um, m. < m. This ngmber m. does not depend

on m.

5.1. Galerkin approximation

For fixed m, the Galerkin approximation um of the solution u of (2.3) is defined

by:

ul + VAu + PmB(um,Um) = Pm
f ,  

t > 0(5.1) u inVu

um(O) = Pmu0

It is classical to derive a priori estimates independent on i on um: for example,

for every t ) s ) 0:

(5.2) 2umlt)12 + V / m
(O ) i2 

d rums)1 2 
+ (t fs)

S

and

~ -v ~ t

ut)VA1t (I - e f]2(5.3) i t)2 ___0___e *_
V2X1V

The tollowing a priori estimate is verified by um:

Lemma 5.1

lu (t)t is bounded independently of m and t for t ) > 0, m ) 0.

Proof

Taking the scalar product of (5.1) with Aum , we obtain

Sdt 1 VAu = 'iAu) - (B(umUM ),Au"

Because of (1.10), (1.17), the right-hand side of this expression is majorized by

-17-
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!f~iAUmj + C 1-. 1/
2 
111IIAU 1

3
/
2 

4 * AumI12 + 1 [f2 + v~ JAU1 2 + c'juj
2 
Ila1

4

UM M 4V 4 m mm

Therefore, with (5.3)

(5.4) d_ jum2 + ,A 1 4 +( *u 1*22

dt M 'M'm

and for 0 4 s 1 t, we can show by integration that

2" 2 a ,I 01 d
(I + Au (t)I 2 (1 + Eu (s)l2 )e a

If t > a >0, we integrate in s from t - a to t and we find

c- f (1+Iu (O)l 12)do

c"ci(1 + Ilau (t),E ) 4 le t i]

Using (5.2), we see that the right-hand side of this inequation is bounded by a

constant depending on a but independent of t and m and the Lemma follows. *

5.2. Behavior as t + aof the Galerkin approximation

Let v be the Galerkin approximation of the solution v of (2.4){ m + (O) M PmB(v m~vm).. Pmg, t > 0

and, as before, umn denotes the Galerkin approximation of the solution u of (2.3).

We set for m. 4 m

wm =um - vm, pm* , P5~wm, q, , %*msp e = - g, em Q*e.

Then

dq M

+Vq + Vm*PmB(vmvwm) + Qm*PmB(wm~um) -Qm*Pme

and consequently,

7 FI im* 2 + Vlqm *2 =(B(vm.wm),Pmqm*) - (B(wfl)um)i Pmq%) + (05 ~e,Pmqm*)
The right-hand side is equal to

(vm~e,Pmqm*) - (B(vm~p,*),P~qm*) - (B(vmf(I -Pm)q*),Pmqm*)

-(13(p 5 ,u5 ),Pmqm*) -(B(qm*,um),Pmqm*),

and becausea of (1.10) and Lemma 5.1, this quantity is bounded by



IQm.-eiqe,. + cjv Ml1/ 2 1v M /2pm * 1/2 1q M*/ 2 1q/2 I

" CI/
2 
IV 1

2 
q m

1
/
2
q M* 13/2 + c,Ipro. 

1 /2Ip. I1/2jimiIq.

M*+*

+ lv 
1 2 1q l 3

l
2 3um Il2qm

+ ~ c * qt n I2 *m 1/uml

I ^m,+l1 i ProI l al I + ",+ ', "

If

(5.6) , +1 > (a),4

we set

c'" x 1/4
(5.7) V'- 2(V - c") 1 4 ) > O 1 2m+ > 0

M*+1 2V

and we bound the last quantity above (5.6) by

1 (c")
2 )1/4

'V 2 A1 2 EV 12 + M+? 2 + 1/4 2
Sio, + iE IQ *e ++ 2V IPm< + C .1 Iq I

and we find

fc ...,Al/2

d qm*12 +1 2 m.+l
(.8) 1 'Iq 1 - e I +

dt m, eV m* V ,

As for Theorem 2.1 we obtain

Theorem 5.1

we assume that Z = 2 and that m ) m,, m, sufficiently large so that (5.6) is

verified. Then:
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-7777=

1) If

IPm M(Um(t) - Vm(t))I + 0, (I - P,)(f(t) - g(t))l 0

for t + w; then

(5.9)(- m.)(um(t) - vm(t))l + 0 for t +

(5.10) Ium(t) - vm(t)j + 0 for t 40

ii) If

1P* (Um(t) - vm(t))12 _ 0, (I -1 m( )(f(t) - g(t))1
2  c*. 0

for t 40, then (5.9) holds and instead of (5.10),

(5.11) lum(t) - vm(t)1
2 

ce O, for t

Remark 5.1

This theorem will take its full interest if we can relate the behavior for t + 0 of

the Galerkin approximation um  of u, to the behavior for t + - of u itself. This

question will be considered in a subsequent work.
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